MEX Tree codeforces solution 2021 - You are given a tree with nn nodes, numerated from 00 to n−1n−1.

  

MEX Tree codeforces solution 2021

SOLUTION

” CLICK HERE “


You are given a tree with n nodes, numerated from 0 to n1. For each k between 0 and n, inclusive, you have to count the number of unordered pairs (u,v)uv, such that the MEX of all the node labels in the shortest path from u to v (including end points) is k.

The MEX of a sequence of integers is the smallest non-negative integer that does not belong to the sequence.

Input MEX Tree codeforces solution 2021

The first line contains a single integer t (1t104) — the number of test cases.

The first line of each test case contains a single integer n (2n2105).

The next n1 lines of each test case describe the tree that has to be constructed. These lines contain two integers u and v (0u,vn1) denoting an edge between u and v (uv).

It is guaranteed that the given edges form a tree.

It is also guaranteed that the sum of n for all test cases does not exceed 2105.

Output MEX Tree codeforces solution 2021

For each test case, print n+1 integers: the number of paths in the tree, such that the MEX of all the node labels in that path is k for each k from 0 to n.

Example MEX Tree codeforces solution 2021
input
Copy
2
4
0 1
0 2
2 3
2
1 0
output
Copy
1 2 1 1 1 
0 0 1 
Note
  1. In example case 1,
    • For k=0, there is 1 path that is from 2 to 3 as MEX([2,3])=0.
    • For k=1, there are 2 paths that is from 0 to 2 as MEX([0,2])=1 and 0 to 3 as MEX([0,2,3])=1.
    • For k=2, there is 1 path that is from 0 to 1 as MEX([0,1])=2.
    • For k=3, there is 1 path that is from 1 to 2 as MEX([1,0,2])=3
    • For k=4, there is 1 path that is from 1 to 3 as MEX([1,0,2,3])=4.
  2. In example case 2,
    • For k=0, there are no such paths.
    • For k=1, there are no such paths.
    • For k=2, there is 1 path that is from 0 to 1 as MEX([0,1])=2.
Reactions